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Abstract 

In this paper we will try to improve on the Modern Portfolio Theory (MPT) as developed by 
Markowitz (1952). As a first step, we combine the MPT model with generalized momentum 
(see Keller 2012) in order to arrive at a “tactical” MPT. In our second step, we will use the 
single index model (Elton, 1976) to arrive at an analytical solution for a long-only maximum 
Sharpe allocation. We will call this the MAA model, for Modern Asset Allocation. 

In our third step, we use shrinkage estimators in our formula for asset returns, volatilities and 
correlations to arrive at practical allocations. In addition, as a special cases, we arrive at EW 
(Equal Weight), Minimum Variance (MV), Maximum Diversification (MD) and (naïve) Risk 
Parity (RP) submodels of MAA. These EW, MV, MD and RP models are sometimes called 
“smart-beta” models.  

We illustrate all these different models on three universes consisting of respectively 10 and 35 
global ETFs, and 104 US stocks/bonds, with daily data from Jan. 1998 – Dec. 2013 (16 
years), monthly rebalanced. We show that all these models beat the simple EW model con-
sistently on various return /risk criteria, with the general MAA model (with return momen-
tum) also beats nearly all of the “smart beta” models.  
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1. Introduction 

The Modern Portfolio Theory (MPT) goes back to a seminal article from Markowitz (1952). 
It’s also known as the “mean-variance” or “tangency” solution for the optimal portfolio allo-
cation. In principle, it’s a strategic approach, or, in other words it aims at a long run (multi-
year) allocation.  

The core of the MPT is the classical mean-variance solution for portfolio selection, also 
known as the maximization of the Sharpe ratio. To compute the corresponding optimal portfo-
lio, one needs to estimate the expected mean and covariance of assets returns, e.g. by their 
sample estimates from historical return data. These estimates often contain substantial estima-
tion errors, especially for the mean return.  

In the strategic (multi-year) MPT framework, the expected mean and covariance of assets 
returns are often estimated over a multi-year historical window, say five to ten years (60-120 
months). In a seminal article, DeMiguel (2007) have shown that the strategic sample-based 
MPT allocation is nearly always outperformed by a simple equal weight (EW) allocation2. 
They show that this also holds true for most of its extensions designed to reduce estimation 
error, e.g. when shrinkage estimators are used. A similar conclusion was recently arrived at by 
Ang (2012) and Jacobs (2013).  All authors used multi-year windows (60-120 months) and 
therefore a strategic approach.  

In this paper, we will take a more tactical approach to MPT and limit the estimation (look-
back) window to 12 months or less. The approach relies heavily on the return momentum 
anomaly, see eg. Jegadeesh (1993) and Faber (2007 and  2010). We also apply the same short-
turn momentum (“persistence”, see also Keller, 2012) approach to the estimation of the future 
volatilities and correlations. Together with the long-only maximization of the Sharpe ratio as 
optimization criterion we arrive at our “Tactical MPT” model.  

In order to get more grips on the optimal allocation in analytical terms, we also used the as-
sumption of  a single-index model (see Elton, 1976) where the returns are related to a market 
(index) return, like EW. Now, we can arrive at an elegant analytical formula for the (long-
only, single-index) maximum Sharpe ratio allocation. We will refer to the resulting model 
(with the single-index, long-only and generalized momentum assumptions) as the “MAA 
model”, for Modern Asset Allocation. The optimal MAA allocation can be expressed analyti-
cal as a near closed- form solution with only one non-linear parameter, which can be solved 
very easily and rapidly computationally.  

The MAA model shows the effects of four components: return (R), volatility (V), market (M) 
and correlation (C). Later on we will connect these four components with the shrinkage of 
asset returns, asset volatilities, market variance and the cross-correlations of assets.  

The first component R represents the return effect: the optimal (long-only) MAA allocation 
for an asset is directly proportional with its momentum returns and zero for assets with nega-

                                                             

2 Kritzman  (2010) found that EW can be beaten by “hand picking” the expected returns from even longer look-
back periods than the 60 or 120 months of DeMiguel.  
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tive momentum returns. This is similar to the well-known relative and absolute momentum 
effect, but now resulting from the MPT theory.  The second component V, represents the vol-
atility effect: the optimal long-only MAA allocation for an asset is inversely proportional to 
the square of its idiosyncratic volatility.  This effect is similar to the well-known low-
volatility anomaly, but now resulting from the MPT theory.  

Components M and C do work together and reflect the so-called “systematic” effect of the 
market and different correlations. If the market effect (component M) is assumed to be zero, 
all assets (with positive returns) are included in the optimal long-only MAA allocation. In this 
case, the effect of correlations on the optimal long-only allocation completely disappears. If 
the market effect is positive, there is a threshold for assets to enter the long-only allocation, 
depending on the correlations. We can therefore increase the number of selected assets by 
simply shrinking the market effect towards zero, giving more diversification. This avoids a 
well-known practical problem with MPT where the number of selected asset is often very 
limited. The larger the “systematic” or market effect is (measured by the market variance), the 
larger the effect of correlations. When in addition the component C is non-zero, the stronger is 
the effect of different correlations, while a zero component C corresponds to the MAA model 
with a constant-correlation model.  

We also cope with practical estimation errors in this model and use shrinkage estimators for 
momentum returns, volatilities, etc. to improve these estimators. In addition, by complete 
shrinkage of each asset return to a constant or to its volatility, we also arrive at special cases 
of this practical MAA model: Minimum Variance (MAA-MV), Maximum Diversification 
(MAA-MD) and Risk Parity (RP) models. These models are sometimes referred to as “smart-
beta” models (see eg. Maillard (2009), Scherer (2010) , Clark (2011 and 2012), Choueifaty 
(2011),  Schoen (2012), Jurczenko (2013), and Roncalli (2013)). We will compare all our 
models with the Equal Weight (EW) model, which can be shown to be also a special case of 
our MAA model. 

Notice that for all these smart beta models, we assume a restricted covariance matrix, arising 
from the single-index model. As a result of this single-index assumption, all the optimal 
smart-beta allocations can be expressed as near closed-form solutions with only one non-
linear parameter, just like the general MAA model. This is in contrast to the complex non-
linear solution of the general minimum variance and maximum diversification models (with-
out the single-index assumption)3.  

We will demonstrate that all these “smart beta” models (and in particular the general MAA 
model with momentum) easily outperform the equal weight (EW) allocation (taken as bench-
mark) for different universes, showing the usefulness of the Modern Portfolio Theory. Before 
that, however, we will first look at our analytical model in more detail. 
  

                                                             

3 Although we will subsequently refer to the MAA-MV and MAA-MD model as MV and MD, the reader should 
remember that these models are submodels of the MAA model where we assumed a restricted covariance 
model according to single-index model. The EW and RP models are not restricted in this way. 
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2. The single-index model 

Our basic MPT assumption is the maximization of the Sharpe ratio (the so-called tangency or 
mean-variance solution) in the single-index model of Elton (1976). The core of this model is 
the distinction between the systematic effect, which relates the return of an asset to the return 
of a single market index (like the EW index) through the so-called “beta” coefficient on the 
one side and the residual (or idiosyncratic or non-systematic) effect on the other. By using this 
simple model we are able to reduce the number of parameter estimates from the NxN covari-
ance matrix of the returns to the more manageable N beta’s, where N is the number of assets 
in the universe. 

We will assume no short sales (long only), no leverage and a risk-free rate of zero for simplic-
ity4. Then the optimal long-only asset allocation which maximizes the Sharpe ratio can be 
expressed as an elegant analytical formula. We derived this MAA formula as a generalization 
of the formula for a long-only MV or MD portfolio by Clark (2012). Later we learned that a 
similar formula as ours appeared long ago in a classical paper from Elton  (1976), who called 
it the single-index model (SIM).  

Our single-index maximum Sharpe formula expresses the long-only optimal asset allocation 
shares wi as a function of the expected returns ri, the expected idiosyncratic variances si and 
the expected beta’s bi of the assets (i=1..N) for a given universe. This is the main formula of 
our paper. The MAA formula is (see also Appendix A for proofs): 

(1)     wi  ~  (1–t/ti)  ri / si            for ti > t, else wi = 0, for i=1..N 

where “~” stands for “proportional to”, and 
ri    is the return of asset i,  
si    is the idiosyncratic variance of the returns of asset i,  
ti  is the Treynor ratio of asset i (with ti=ri/bi),  
bi is the beta of asset i wrt. the market return,, 
t  is the long-only Treynor threshold, so that wi=0 for all assets with ti<t 

The MAA formula eq. (1) gives us the optimal portfolio allocation as an elegant analytical 
formula, given the long-only and single-index assumptions. Besides the returns ri and the idi-
osyncratic variances si, an important role is played by the Treynor ratio ti (see Treynor, 1996). 
Selected (long-only) assets should have a Treynor ratio ti above the Treynor threshold t. This 
threshold t is a function of the optimal weights wi, and therefore endogenous. The optimal 
MAA allocation can be expressed analytical as a “near closed-form” solution with only one 
non-linear parameter, which can be solved very easily and rapidly computationally.5 

 When the market variance s (component M) is zero, the systematic part t/ti of eq. (1) becomes 
zero since the threshold t is zero (see eq. (A.6)) and there is no beta or correlation effect. In 

                                                             

4 We use this assumption mainly for notational simplicity. Mathematically, one can easily include a non-zero 
risk-free rate by replacing returns by excess-returns (above the risk-free rate) in most formulas. Practically, we 
found only small effects when using excess-returns, also because we had short-term bonds in most of our uni-
verses. 

5 We can numerically solve this problem by iterating between wi and t until convergence, which is very fast in 
practice.  
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that case, the optimal long-only MAA allocation shares for an asset are zero if its return ri is 
negative, or proportional to its returns if positive. We call this the effect of component R. The 
share of an asset is also inversely proportional to its idiosyncratic variance si, which equals the 
square of their residual volatilities (component V). When component M is not zero, only as-
sets with a Treynor ratio above the threshold t are included6 in the portfolio, with larger 
shares for assets with larger Treynor ratios. Notice that larger Treynor ratios correspond to 
smaller betas and therefore to smaller market correlations, given certain returns.  

3. Special Cases of the MAA formula 

The biggest practical problem with MPT is the determination of the expected returns. This 
also holds for the MAA formula (1) above. Traditionally, with “strategic” MPT, lookback 
periods of  60 or 120 months (5-10 years) of data are used to estimate expected returns (and 
volatilities and correlations). In the next section we will consider more “tactical” (short-term) 
lookback periods. Alternatively, one might use restricted models without the need to estimate 
the expected returns. Examples are Minimum Variance (MV), Maximum Diversification 
(MD) and naïve Risk Parity (RP), often called “smart beta” models. These can be shown to be 
special cases of the MAA model given some simplifying assumptions on the expected returns 
(see also eg. Hallerbach, 2013). 

Minimum Variance (MV).  An alternative for maximization of the Sharp ratio is minimiza-
tion of the portfolio variance. See eg. Scherer (2010) and Clark (2011). It can easily be shown 
that the corresponding optimal allocations are a special case of the maximum Sharpe alloca-
tions when the expected return for each asset is assumed to be constant over all assets. After 
substitution of ri=r in eq. (1) we arrive at the MV formula for the optimal long-only singe-
index allocation:  

(2)     wi ~ (1- bi/b) / si   for bi <b, else wi=0, for i=1..N 

where  
b   is the long-only beta threshold, so that wi=0 for all assets with beta bi>b. 

When the market variance s (component M) is zero, the idiosyncratic variance si  equals the 
asset variance (si=vi

2, with vi the volatility of asset i) and the systematic part bi/b of eq. (2) 
becomes zero (since 1/b=0, see the Appendix). In that case, the optimal long-only allocation 
share for an asset is only inversely proportional to its variance (equal to the square of its vola-
tility vi). So all assets are now included. When component M is not zero, only assets with a 
beta below the threshold b are included in the portfolio, with larger shares for assets with 
smaller beta’s.   

Maximum Diversification (MD). An alternative for maximization of the Sharp ratio is max-
imization of the diversification of the portfolio. See Maillard (2009), Choueifaty (2011), 
Jurczenko (2013) and Roncalli (2013). It can easily be shown that the corresponding optimal 
allocations are a special case of the maximum Sharpe allocations when the expected return for 

                                                             

6 This is under the assumption that all beta bi are non-negative (which holds for nearly all universes). The spe-
cial case of assets with negative beta’s is (although rare) most interesting since these assets can act as “hedge”. 
See also the term (1-t/ti) in eq. 1 which becomes >1 when ti<0 and t>0. For more details  see Elton (1976) and 
the Appendix.   
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each asset is assumed to be proportional to its volatility. This implies that the Sharpe ratios 
ri/vi are the same for all assets. After substitution of  ri =vi in eq. (1),  we arrive at the MD 
formula for the optimal long-only single-index allocation: 

(3)     wi ~ (1- ci/c) vi / si   for ci < c, else wi=0, i=1..N 

where  
ci  is the correlation of asset i with the market, 
vi  is the volatility of asset i, 
c  is the long-only correlation threshold, so that wi=0 for all assets with ci>c. 

When the market variance s (component M) is zero, the idiosyncratic variance again equals 
the asset variance and the systematic part ci/c of eq. (3) becomes zero (since 1/c=0, see the 
Appendix). In that case, the optimal long-only allocation share for an asset is only inversely 
proportional to its volatility. This is the “naïve” Risk Parity (RP) solution as a special case of 
the MD allocation, where all allocation weights wi are proportional to the inverse of the vola-
tility vi. All assets are now included. When component M is not zero, only assets with market 
correlation below the threshold c are included in the portfolio, with larger shares for assets 
with smaller correlations.   

Note that when we refer to MAA, MV and  MD, we will always assume the single-index 
model and therefore a restricted covariance matrix. A special case of the MAA, MV and MD 
model is the Constant-Correlation (CC) version (Elton, 1976) where we assume constant 
cross-correlations among assets, which is the case when the market correlation (ci) is constant 
over assets. Now we say that component C is zero. For the MAA-CC model we arrive at for-
mula similar to eq. (1) but with the Treynor ratio (ri/bi) replaced by the Sharpe ratio (ri/vi). 
Now only assets with a Sharpe ratio (instead of the Treynor ratio) above a certain long-only 
threshold will be included, with larger shares for assets with larger Sharpe ratios.  Finally, if 
we assume that all returns, volatilities and all market-correlations are the same for all assets, 
we arrive at the Equal Weight (EW) allocation as a very special case of the MAA allocation 
where all weights are 1/N, identical to the market (index) allocation.  

4. Estimation of the general MAA model: momentum and shrinkage 

In the above MAA model, future parameters like expected returns ri etc. are assumed to be 
known, which is not realistic. In practice we have to use sample estimates of these parameters 
based on the past. So the quality of our optimal portfolio allocation model depends primary on 
the quality of these estimates.  

Momentum. We will estimate all expected returns by the rate of change (ROC) of the asset 
price over a certain lookback period, assuming some persistence over time. In the traditional 
“strategic” MPT model, the lookback period is often several years (60-120 months). We will 
take a more tactical approach by focusing on lookback period of maximum twelve months, in 
order to make use of the well-known momentum anomaly.   
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Looking at eq. (1), we see that the optimal long-only shares wi are only positive if the return ri 
is positive7. This corresponds to absolute momentum or trend-following, see eg. Faber (2007), 
Hurst (2012), Antonacci (2013). When these shares are positive, the optimal long-only shares 
wi are proportional with ri. This corresponds to relative momentum anomaly, see eg. 
Jegadeesh (1993),  Faber (2010) and Butler (2013). So both effects results directly from our 
MAA model. 

Besides returns, using daily historical data we can also arrive at sample estimates for expected 
asset volatilities vi, for expected market volatilities v (=sqrt(s)) and market correlations ci us-
ing historical estimates over similar lookback periods. With e.g. 4 months lookback we can 
use around 84 days of total return data for computing historical volatilities and correlations, 
next to returns. Just like return momentum (for component R), we use the assumption of per-
sistence (“generalized momentum”, see Keller, 2012) to arrive at estimates for expected asset 
volatilities (component V), market volatilities (component M) and correlations (component C) 
in the future. And remember that with tactical (ie. monthly) rebalances, the future is also just 
months away, instead of years as in case of “strategic” MPT.   

So “momentum” refers here to not only returns. Therefore we can take advantage of the flexi-
bility of short-term momentum also for volatilities and correlations. This is relevant since, 
even when volatilities and correlations are more stable over time than returns, they do change, 
in particular in times of crisis like 2008 (see Chin 2013, Butler 2012, Schoen 2010 and New-
found, 2013). That this flexibility might be relevant for asset allocation is also shown in the 
present discussion of low-volatility and low-beta indices and ETFs (see e.g. Blitz, 2012). 

Notice that, as a consequence of the single-index model, only the N market correlations ci 
(and thus N beta’s) are to be estimated.  This is in contrast to the full NxN covariance matrix 
which might be singular with limited (short-term) data. Notice also that in principle the look-
back period can be different for all these components R, V, M and C. As said, for our “tactical 
MPT” allocation, we assume all lookback periods to have a maximum length of 12 months. 
As default in our empirical test we will actually use a lookback period of 4 months for all 
components, since this turns out to give good results for many different universes. In the next 
section we will look at different lookback periods for a particular universe (N=10) to check 
the robustness of this default. 

Shrinkage. The disadvantage of using short lookback periods is that estimated expected re-
turns, volatilities and beta’s can change rapidly over time, leading to large errors and possibly 
to even more extreme weights in our optimal portfolio allocation than in a strategic MPT allo-
cation. Therefore we will use simple shrinkage methods to reduce these errors8. See also Le-
doit  (2004) and DeMiguel  (2009 and 2013). We will simply shrink all returns ri towards  the 
average return, all volatilities vi towards the average volatility, the market variance s towards 
zero and all market correlations ci towards the average market correlation by introducing 
“shrinkage weights” WR, WV, WM and WC (see below) for the components R, V, M, and C. 
                                                             

7 Since the idiosyncratic variance si  and the systematic part (1-t/ti) are always positive if ti>t. We discard for the 
moment the rare “hedge”case where bi<ri<0 which also results in a positive share wi. See also Elton (1976) and 
note 4. 

8 As an example, the shrinkage formula for return ri equals w*ri+(1-w)*rm, where w is the shrinkage weight 
(w=0 and 100% corresponds to full and no shrinkage, respectively) and where rm is the (average) market return. 
Shrinkage will reduce the mean-square error by decreasing the variance, while increasing the bias of the esti-
mator. 
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All averages are also short-term (eg. over 4 months) and cross-sectional, so eg. the average 
return equals the EW return (rm= ∑ri/N).  

By shrinking the market variance s, we decrease the Treynor threshold t and therefore allow 
for more assets in the portfolio (see A.6 in the Appendix). This puts more emphasize on di-
versification and less on the systematic component. When the shrunk variance s becomes ze-
ro, the threshold t is zero, and all assets (with positive returns) are included in the optimal 
allocation. This is the case where we say that component M is zero. 

We use “weights” WR for the component R such that a weight WR=100% implies no shrink-
age of return ri and WR=0% implies full shrinkage towards the (market) mean, effectively 
disabling the variations in returns ri. The same applies to components V, M and C, with 
weights WV, WM and WC between 100% (no shrinkage) and 0% (full shrinkage).  Therefore 
the shrinkage weight W reflects the importance of a component, with a maximum effect of the 
component when W=100%.  

Besides shrinking a component to 50% to improve the (robustness of the) estimates of the 
expected value (eg. for return, volatility, variance or correlation) we can also put these 
weights “on” (100%) or “off” (0%) to arrive at some special cases. And instead of shrinking 
the return ri to the average (market) return, we can also shrink it to (or substitute it by) the 
volatility vi of asset i, indicated by WP=100%  (with P for Parity)9. Below we have summa-
rized all models used in the next sections in terms of shrinkage weights W, where bold 
weights are model defaults (W=0 or 100%) and the rest our (arbitrary) own defaults of 
W=50% (or WV=0% for MAA-Offensive, see the next sections).  

Model10 WR WV WM WC WP  
MAA 50% 50% 50% 50% 0%  

MAA-Off 50% 0% 50% 50% 0%  
MV 0% 50% 50% 50% 0%  
MD 0% 50% 50% 50% 100%  
RP 0% 100% 0% 0% 100%  
EW 0% 0% 0% 0% 0%  

Table 1. Shrinkage weights for various models 

  

                                                             

9 It is even possible to make a mix of MS and MD by shrinking ri both ways (eg. WR=50% and WP=50%). 

10 For the last universe (N=104) we will use WR= 10%  (instead of 50%) as default choices for MS and MS-Off, 
and WV=10% (instead of 50%) for MS, MV and MD, in view of the high volatility of the individual (Nasdaq100) 
stocks. See also section 8. 
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5. Tactical MPT in practice: data and methodology   

In the following sections we will apply our models to three universes from 1997 to 2013 (16 
year), to demonstrate the superiority of “tactical MPT” over EW and other smart-beta models.  

We will present backtest results for three universes of increasing size (N=10 and N=35 both 
for global ETFs and N=104 for Nasdaq100 stocks), using mostly the same default shrinkages 
(50%) and the same default lookback periods (4 months) for all universes as parameters in 
order to limit the risk of datasnooping. In the next section, we will also explore our models for 
the first universe (N=10) in more detail for other parameter values, to test for robustness. As 
assets we will use global ETF’s for the first two universes (N=10 and 35) for equities, bonds, 
alternatives, etc., for both US and abroad (IM and EM) and mainly Nasdaq stocks for the third 
universe. We assume monthly rebalancing. 

The daily total-return data for the three universes is from Bloomberg and Yahoo and the 
timeframe for all backtest is December 31, 1997 to December 31, 2013 (16 year). When his-
torical data is unavailable from the start of 1997 (for the maximum lookback period of twelve 
months) for certain ETFs and stocks, we will extend them to the past by using (the returns of) 
similar (highly correlated) index funds.  

Rebalancing is done on the first close of the new month, based on the (adjusted) data for the 
last close of the old month. For transaction costs we will use 10 bps11. We assume there is no 
leverage possible and all trades are long only. For simplicity, we will assume that the risk-free 
rate is zero in all our models. 12 

The legend for the various backtest statistics is: 

R = CAGR, so annual Return (in %) 
V = annual Volatility (in %)  
D = maximum Drawdown over the full backtest 1997-2013 (in %) 
T = annual Turnover  
SR = Sharpe ratio (with an annual 2.5% risk-free rate)  
OR = Omega ratio (with an annual 0% target return) 
CR = Calmar ratio (with an annual 5% target return) 

The Omega ratio OR reflects the “gains to losses” ratio (around a target return of 0%). The 
Sharpe ratio SR gives the annual return R above the average historical T-Bill rate13 divided by 
the volatility V. The Calmar ratio CR gives the ratio of the return above an annual 5% target 
return and the max drawdown D. By using a 5% return target (instead of the T-Bill rate of 
2.5%) this ratio is more sensitive for higher returns (than SR and OR). By using the maximum 
drawdown D (instead of the volatility), the Calmar ratio CR is more sensitive for negative 
                                                             

11 We did some sensitivity tests for higher (one-way) transaction costs than 10bps, but most results for our 
models in comparison to EW in terms of return/risk stay valid up to a maximum of 50-100 bps. 

12 See note 4. The risk-free rate is also relatively low over the 16 years. For the Sharpe Ratio (SR) we will use the 
average T-Bill rate (ca. 2.5%) as risk-free rate, for the Calmar Ratio (CR) double this as target rate (5%).  

13 The 3-month T-Bill has an average annual return (CAGR) of approximately 2.5% over the period considered 
(1997 – 2013). 
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deviations than S. Notice that all backtest statistics (including the max drawdowns) are based 
on monthly (instead of daily) measurements. 

We prefer the Calmar ratio CR over SR (and OR) as the best metric to judge the return/risk 
performance of a backtest. This can be confirmed, in our opinion, by visual inspection of the 
equity graphs for different values of CR for different universes. 

In the following we will often refer to the MAA and the MV, MD and RP submodels. Please 
remember that for all these models not only the short-term (momentum) shrinkage estimates 
are used but also the restricted covariance matrix from the single-index model. For the EW 
model no shrinkage or covariance restrictions are relevant. The same holds for the naive RP 
model, where only the (short-term) non-shrunk volatility estimates are used in order to arrive 
at the traditional volatility weighted allocation. 

6. The small global universe (N=10) 

Before we arrive at the empirical validation of our models for the two other (larger) universes, 
in this paragraph we explore the various corners of our models applied to the first multi-asset 
universe (N=10), in order to assess its robustness. The N=10 universe consists of 10 global 
ETFs, representing US, international and EM stocks (VTI, VGK, EWJ, EEM), two govern-
ment bonds (IEF and TLT), two REITs (IYR, RWX) and two commodities (DBC, GLD). 
Data (daily adjusted close) is from Bloomberg (Jan. 1997- Dec. 2013), the backtests start in 
Jan. 1998. All lookback periods are set to 4 months, and all shrinkage weights WR, WV, WM, 
WC are initially (rather arbitrarily) set to 50%, except for MV (WR=WP=0), for MD and RP 
(WR=0 and WP=1), and for EW (WR=WV= WM=0). Besides the default MAA variant there is 
also an “offensive” variant (MAA-Off) where WV is set to zero. By changing WV we can ac-
tually control V nearly linear.  

In fig. 1 we present the statistics and the equity graph (log scale) for all our six models includ-
ing EW for this small global universe (N=10). As can be seen, the MAA models are clearly 
superior not only to EW but also to the MV, MD and RP submodels. These latter models are 
very similar in return R as the EW benchmark, but with smaller max drawdown D (and vola-
tility V) and therefore with better (higher) return/risk figures as expressed by the Omega, 
Sharpe, and Calmar ratios. In terms of the CR ratio both MAA models wins hands-down, 
while the MAA-Off variant delivers slightly higher returns R without much decrease in re-
turn/risk. We include this variant because it shows how our models can show some “pseudo-
leverage” (without lending) by fully shrinking the V component (WV=0). Notice that turnover 
T is near zero (minimal) for the EW model, with the MD and RP models second and the MV 
model third, and maximal for both MAA models. In the rest of this section we will examine 
this global multi-asset universe (N=10) in somewhat more detail to get a feeling of the ro-
bustness of our models. 
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Decomposing the MAA model into components . In this section we will examine the impact 
of the different components R, V, M and C on the various return/risk ratios of the MAA mod-
el, by rebuilding the model step-by-step, starting at the EW benchmark and adding these 
components one by one, using shrunk and non-shrunk estimates.  

When we assume that components R, V, and C are all irrelevant, we can shrink the corre-
sponding estimates fully to their means by putting the shrinkage weights WR, WV and WC 
equal to zero.  In this case, we arrive at the Equal Weight (EW) model as the market index 
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Fig. 1.  Statistics and equity line (log scale) for the small global universe (N=10) 
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(or the benchmark) for which WR=WV=WC=0. This is our starting point of fig. 2 (left bar), 
where we show the Sharp and Calmar Ratio (CR left, SR right) for EW. In the graphs we also 
show these return/risk ratios for an increasing number of components (R, RV, RVM, and 
RVMC), including the absolute momentum (AM) case where only the sign instead of the re-
turn size (as in R) is used in eq. (1). We give these ratios for both the default shrunk model 
(with all W=50%) as the non-shrunk (NS) model (with all W=100%). As an example, for the 
RVM case we have WR=WV=WM=50% (or =100% for NS) and WC=0%. This is the Constant 
Correlation model (here for MAA).  Notice that the RV case has no systematic (market) ef-
fect, while the RVMC case reflects the systematic (market) effect including different correla-
tions. 

 

 
Both the Sharpe and the Calmar ratio improves monotonic for the shrunk model when the 
number of components increases from EW and AM towards to full RVMC model. This is not 
the case for the unshrunk components, where also the return/risk ratios are lower than in the 
shrunk case. Notice the improvement of the Calmar ratio CR from EW towards RVCM for 
the shrunk case. The same holds for the Sharp ratio (SR) from EW/AM/R. There is (in terms 
of SR) not much difference between AM and R, but adding V, M and C improves the re-
turn/risk performance, as do shrinkage. 

Different shrinkage weights. In fig. 3 we present the effect on the Calmar ratio (CR) for the 
MAA model (N=10) as a function of different shrinkage weights (WR, WV, WM, WC) plus the 
scores for EW (right bar) for comparison. For example, in the left group we see the effect on 
CR of changing WR (=0,10, .., 100%), holding all the other weights (WV, WM, WC) at the de-
fault value (W=50%) for the MAA model.  The effect on the Sharpe ratio (not displayed) is 
very similar to that on the Calmar ratio but less pronounced.  

From the graph it is clear that the effects of the shrinkage weights WR on the return/risk ratio 
CR are the most substantial of all four components, with the best CR around WR=50%  (red 
bar). The next components which show some sensitivity are WV and WM, with the same pat-
tern. The effect of WC is negligible in this case (MAA, N=10), making clear that the effect of 
different correlations is very limited. All CR ratios are much better than those for EW (black 
bar), including those for the non-shrunk case (W=100%, orange bar).  This also shows that 
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Fig. 2. Effect of factor combinations / EW on the Sharp (SR) and Calmar (CR) ratios, shrunk and non-shrunk (NS) for MS (N=10) 
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(for N=10) our MAA results relative to the EW benchmark are rather robust for different de-
gree of shrinkage. 

 

 

Different lengths of the lookback period.  Now we will check the robustness of the MAA 
model (N=10) for a different lookback period for R, V, M and C (returns, volatilities, vari-
ances and correlations) for the N=10 universe, both for 1998-2005 (8 years) and the default 
1998-2013 (16 years). See fig. 4 where we show the effect on the Calmar ratio (CR) for look-
back lengths of 1- 6, 9 and 12 months in months plus EW. For all our models in this paper, we 
used a default lookback period of length 4 months for the four components R, V, M, C. All 
lengths in fig. 4 are also the same for all components. So when we use eg. a lookback period 
of 12 months, the returns, volatilities/variances and correlations are all estimated on a histori-
cal lookback period of 12 months.  
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Fig.  3.  Effect of shrinkage weights and EW on Calmar ratio (CR) for MS (N=10) 
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We assumed again a default shrinkage of 50% for all our four components. Notice that for the 
longest lookback period of 12 months we needed data from begin 1997.   

From fig. 4 we conclude that for the full 16 year period (1998-2013), a lookback length of 
four months is clearly optimal. For the first 8 year period (1998-2005, excluding the financial 
crisis in 2008/9), all short lengths (1-6 months) are good, with a slight optimum at two 
months. So four months seems a good compromise. Per period, all CR scores are always bet-
ter than the EW benchmark. 

7. The large global universe (N=35) 

In this paragraph we examine our models applied to a larger global universe (N=35). The 
N=35 universe consists of 35 global ETFs (VTI, IWM, VIG, QQQ, XLF, XLY, XLP, XLU, 
XLV, XLB, PFF, VGK, EWJ, EPP, SCZ, FXI, ILF, EWX, SHY, IEI, IEF, TLT, TIP, MUB, 
MBB, CIU, LQD, HYG, BWX, EMB, VNQ, RWX, DBE, DBC, DBP), extended to 1997 by 
corresponding index funds if necessarily. Data (daily adjusted close) is from Yahoo (Jan. 
1997- Dec. 2013), the backtests start in Jan 1998. We use the same models, weights and look-
backs as for the N=10 universe, incl. WV=0 for MAA-Offensive.  

In fig. 5 we present the statistics and the equity graph (log scale) for all the models including 
EW for this universe (N=35). Disregarding the MAA-Off model (red bar), nearly all conclu-
sions for the N=10 also holds for this universe. In particular, the risk/return statistics OR, SR 
and CR are best for MAA and subsequently lower for MV, MD, RP and EW. In particular the 
Calmar ratio CR is dramatic low for MV, MD, RP and EW because of low return R and high 
max drawdown D, while the Sharpe (SR) and Omega (OR) ratio are lowest for EW. 

The most interesting model is the offensive MAA-Off (with WV=0%) which has a much bet-
ter return (R=14.3%) than MAA (10.7%) but with nearly double the volatility (V=14% vs. 
8%) and more than double the max drawdown (D=17% vs. 7%). Still, this form of “pseudo-
leverage” easily wins over EW (R=9.5%, V=14%, D=37%) and is in return/risk scores SR 
and CR only bypassed by MAA. 
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8. A large US stock universe (Nasdaq100) 

In this paragraph we examine our models applied to the third and final universe (N=104), 
which consists of all the recent 100 Nasdaq100 stocks together with 4 US government bond 
ETFs (IEI, IEF, TLT and EDV). All stocks are extended to 1997 by the Nasdaq-100 index 
(^NDX) 14 and by corresponding index funds for the bonds. Data (daily adjusted close) is 
from Yahoo (Jan. 1997- Dec. 2013), the backtests start in Jan 1998.  Because of the much 
higher volatility of individual stocks we decided to shrink WV and WR further down to 10% 
(instead of the default 50%), but else we have used the same models, weights and lookbacks 
as for the N=10 and 35 universe, incl. WV=0 for MAA-Offensive.  

In fig. 6 we present the statistics and the equity graph (log scale) for all our models including 
EW for this universe (N=104). Nearly all conclusions for the N=10 and N=35 also holds for 
this universe. In particular, the Calmar ratio CR is best for MAA and MAA-Off  (around 
CR=1.5), and subsequently lower for MAA-MV, MAA-MD (around CR=1.1), and dramatic 
lower for RP and EW (around CR=0.4) because of high maxdrawdowns  (D=38% and 47%, 
respectively).  

Omega (OR) and Sharpe (SR) ratios are similar for MAA, MAA-Off, MAA-MV and MAA-
MD (around OR=4 and SR=1.6, resp.), while the Calmar ratio is dramatically low (around 
CR=0.4) for  RP and EW. 

Notice that MAA-Off scored an incredible return (R=36% annual) without any leverage, but 
also the other models fared well with the lowest return (R=20%) for RP and the best for MD 
and MAA (29%), with even 24% for EW (including the 4 bonds). Volatility V is between 13 
and 21% for all non-EW models and 27% for EW.  Besides both MAA models also the per-
formance of MAA-MD and MAA-MV is impressive.

                                                             

14 Some stocks available only recently (like Facebook), are extended by us by ^NDX (the Nasdaq100 index) back 
to 1997. By doing so, we reduce the survivorship bias somewhat since ^NDX also includes non-survivors from 
the past. However, the combination of a high beta and average return of ^NDX often prohibits selection into 
the optimal allocation. 
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9. Conclusions 

We have tried to improve upon MPT by using a more tactical, analytical and practical ap-
proach. In our tactical MPT model, we use short-term lookback periods in order to have more 
flexibility and to benefit from the momentum effect. This small step has the biggest impact on 
the success of MPT, as we have proved empirically. In addition we used a simple four-
component single-index model to enable an elegant analytical interpretation of the long-only 
allocation. Finally we add shrinkage of the estimators for returns, volatilities, and correlations 
to arrive at our practical solution. This includes maximum Sharpe (MAA) and “smart-beta” 
models, like minimum variance (MV), maximum diversification (MD), and naïve risk parity 
(RP) models. We run monthly backtests from 1998 to 2013 (16 years) for three universes of 
10 and 35 global ETFs and 100 Nasdaq stocks. All our models beat EW in terms of various 
return/risk statistics and in nearly all cases our MAA models beat the smart-beta models. 

For future research we would like to consider more advanced (eg. EMA and GARCH like) 
models for estimating the expected R, V, M and C components rather than the simple 4 month 
lookback. We also have done some preliminary tests with the unrestricted tactical MPT mod-
el, using the Critical Line Method (CLA) of Markowitz (see also Nawrocki, 1996) to numeri-
cally invert the covariance matrix. In addition we did some datasnoopings test on our MAA 
models based on Bailey (2013). The first results for both look promising.  

In conclusion, we think there are enough topics for future research when we take a more ‘tac-
tical’ approach to good old MPT. So yes, the reports of the death of Markowitz’s MPT have 
been greatly exaggerated! 
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Appendix. Proof of eq. (1) 

What follows is a matrix representation of the proof by Elton (1976). Let S be the expected (semi-
positive definite and symmetrical) NxN covariance matrix, w the optimal weight vector and r the vec-
tor of expected (excess) returns, l a vector of one’s, all of length N. Then the MAA solution maximizes  

(A.1)   r’l / sqrt(w’Sw),   w’l =1  

The solution is given by the vector of optimal weights 

(A.2)  w = sp S-1 r 

where sp is the normalization constant (and variance of the optimal portfolio), following from the con-
straint ∑ wi = 1. The single-index model (SIM) is, for assets i=1,..,N 

(A.3) ri = ai + bi rm  + ei 

where rm is the market or index (excess) return, ai is the “alfa” for asset i, bi is the market (or index) 
“beta” for asset i, and ei is the “idiosyncratic” residual for asset i, assumed to be independently and 
randomly distributed. When rm equals the EW index, there is a small dependency which we will disre-
gard for simplicity and since it is of the order 1/N and therefore small for large N (see Fama, 1968).  

The NxN covariance matrix S equals, given the single-index assumption,  

(A.4)    S = s bb’ + Diag (se)   

where b equals the N-vector of beta’s bi (=vici/v), s (=v2) the market variance, se the N-vector of resid-
ual (or idiosyncratic) variances si (= vi

2 –sbi
2), and ci the correlation of asset i with the market, i=1..N. 

The inverse of the matrix S equals (see eg. Clarke, 2012) 

(A.5)     S-1 = Diag (1/se) –  (b/se)(b/se)’ / (1/s + (b/se)’b)  

Substitution of eq. (A.5)  in eq. (A.2) gives eq. (1) with the “long-only” Treynor threshold t 

(A.6)    t = (s ∑p rjbj/sj )  /  (1 + s ∑p bj
2/sj ) 

where ∑p equals the summation over all assets j in the portfolio (ie. with wj>0) and ti = ri / bi equals the 
Treynor ratio for asset i (i=1,..,N). This can easily be implemented when bi>0 by sorting all assets on 
their Treynor ratio (highest ti first) and computing the Treynor threshold t for those assets already in-
cluded until an asset ti exceeds the Treynor threshold t (see also Elton 1976). In practice one computes 
eq. (1) starting with t=0 and iterates then between t and wi until convergence (which is often very fast). 
This also works when bi<0 for some i.  

In the MV (full shrinkage of all returns to rm) and MD case (to vi), we can compute the beta threshold 
b=1/t and the correlation threshold c=1/t assuming rm=1, since rm cancels in the quotient ti/t in eq. (1) 
while the constant rm is absorbed in the normalization constant. Then eq. 1 becomes wi ~ (1-bi/b) / si 
for bi <b else wi=0 for MV, and wi ~ (1-ci/c) / si for ci <c else wi=0 for MD. We can also proof that in 
case of MAA with constant correlation (ci independent of i) there holds wi ~ (1-h/hi) / si for hi>h else 
wi=0 where hi=ri/vi equals the Sharpe ratio and h=1/t is the Sharpe threshold, again assuming rm=1. 
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